Lettuce‐produced hepatitis C virus E1E2 heterodimer triggers immune responses in mice and antibody production after oral vaccination
نویسندگان
چکیده
The hepatitis C virus (HCV) is a major etiologic agent for severe liver diseases (e.g. cirrhosis, fibrosis and hepatocellular carcinoma). Approximately 140 million people have chronic HCV infections and about 500 000 die yearly from HCV-related liver pathologies. To date, there is no licensed vaccine available to prevent HCV infection and production of a HCV vaccine remains a major challenge. Here, we report the successful production of the HCV E1E2 heterodimer, an important vaccine candidate, in an edible crop (lettuce, Lactuca sativa) using Agrobacterium-mediated transient expression technology. The wild-type dimer (E1E2) and a variant without an N-glycosylation site in the E2 polypeptide (E1E2∆N6) were expressed, and appropriate N-glycosylation pattern and functionality of the E1E2 dimers were demonstrated. The humoral immune response induced by the HCV proteins was investigated in mice following oral administration of lettuce antigens with or without previous intramuscular prime with the mammalian HEK293T cell-expressed HCV dimer. Immunization by oral feeding only resulted in development of weak serum levels of anti-HCV IgM for both antigens; however, the E1E2∆N6 proteins produced higher amounts of secretory IgA, suggesting improved immunogenic properties of the N-glycosylation mutant. The mice group receiving the intramuscular injection followed by two oral boosts with the lettuce E1E2 dimer developed a systemic but also a mucosal immune response, as demonstrated by the presence of anti-HCV secretory IgA in faeces extracts. In summary, our study demonstrates the feasibility of producing complex viral antigens in lettuce, using plant transient expression technology, with great potential for future low-cost oral vaccine development.
منابع مشابه
Development of Preventive Vaccines for Hepatitis C Virus E1/E2 Protein
Hepatitis C virus (HCV) is responsible for a vast majority of liver failure cases. HCV is a kind of blood disease appraised to chronically infect 3% of the worlds’ population causing significant morbidity and mortality. Therefore, a complete knowledge of humoral responses against HCV, resulting antibodies, and virus-receptor and virus-antibody interactions, are essential to design a vaccine. HC...
متن کاملEnhanced Immune Responses of a Hepatitis C Virus core DNA Vaccine by co-Inoculating Interleukin-12 Expressing Vector in Mice
Background: Hepatitis C (HCV) is a worldwide problem without an effective vaccine with more than 170 million chronically infected people worldwide. DNA vaccines expressing antigenic portions of the virus with adjutants have recently been developed as a novel vaccination technology. Objectives: In the present study, a DNA vaccine expressing HCV core protein was developed with IL12 as a genetic a...
متن کاملImmunization with cytomegalovirus gB protein produced by the Baculovirus Expression Vector System to elicit humoral immune response in BALB/c mice
Introduction: Due to the role of neutralizing antibodies which can prevent human cytomegalovirus (HCMV) infection, most of the efforts have been focused on designing vaccines capable of eliciting protective humoral immunity. The aim of this study was to evaluate the antibody response of BALB/c mice to a truncated HCMV glycoprotein B produced in insect cells using Baculovirus Expression Vector ...
متن کاملHepatitis C Virus E1 and E2 Proteins Used as Separate Immunogens Induce Neutralizing Antibodies with Additive Properties
Various strategies involving the use of hepatitis C virus (HCV) E1 and E2 envelope glycoproteins as immunogens have been developed for prophylactic vaccination against HCV. However, the ideal mode of processing and presenting these immunogens for effective vaccination has yet to be determined. We used our recently described vaccine candidate based on full-length HCV E1 or E2 glycoproteins fused...
متن کاملFine mapping of murine antibody responses to immunization with a novel soluble form of hepatitis C virus envelope glycoprotein complex.
UNLABELLED The hepatitis C virus (HCV) envelope glycoprotein E1E2 complex is a candidate vaccine antigen. Previous immunization studies of E1E2 have yielded various results on its ability to induce virus-neutralizing antibodies in animal models and humans. The murine model has become a vital tool for HCV research owing to the development of humanized mice susceptible to HCV infection. In this s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2017